

Review

Analytical techniques for the detection of benzo[a]pyrene and other polycyclic aromatic hydrocarbons in food

Adebayo J. Akinboye, Joon-Goo Lee*

Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea

Abstract Polycyclic aromatic hydrocarbons are persistent environmental contaminants, several of which, including benzo[a]pyrene (BaP), are potent carcinogens. Their presence in food poses significant health risks, necessitating accurate and sensitive monitoring. This review summarizes analytical approaches used for the extraction, separation, and detection of BaP and other Polycyclic aromatic hydrocarbons in food and beverages. Conventional chromatographic methods, particularly liquid chromatography with fluorescence detection (LC-FLD) and gas chromatography-mass spectrometry (GC-MS), remain the reference techniques for quantitative analysis, achieving detection limits of 0.01-10 µg/kg across various matrices. Immunological methods such as enzyme-linked immunosorbent assay and lateral flow immunoassay offer rapid, cost-effective screening, with sensitivities of 0.03-0.1 µg/kg. Recent spectroscopic innovations, including Raman, surface-enhanced Raman, and fluorescence spectroscopy, enable non-destructive, solvent-free detection of BaP at sub-ppb levels. These techniques support the growing shift toward high-throughput, portable analytical platforms for food safety surveillance. Overall, while immunological and spectroscopic tools provide excellent preliminary screening capabilities, chromatographic methods, especially LC-FLD and GC-MS, remain the most reliable and widely validated options for routine food analysis due to their superior accuracy, selectivity, and regulatory acceptance.

OPEN ACCESS

Citation: Akinboye AJ, Lee JG. Analytical techniques for the detection of benzo[a]pyrene and other polycyclic aromatic hydrocarbons in food. *Food Sci. Preserv.*, 32(6), 978-995 (2025)

Received: September 20, 2025

Revised: November 03, 2025

Accepted: November 05, 2025

***Corresponding author**

Joon-Goo Lee

Tel: +82-2-970-6742

E-mail: jglee@seoultech.ac.kr

Copyright © 2025 The Korean Society of Food Preservation. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords polycyclic aromatic hydrocarbons, benzo[a]pyrene, analytical methods

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants released from both natural and anthropogenic processes, primarily through the incomplete combustion of organic materials such as fossil fuels, wood, and biomass (Abdel-Shafy and Mansour, 2016; Stogiannidis and Laane, 2015). They are also generated during high-temperature food processing methods like smoking, drying, roasting, and grilling. Structurally, PAHs consist of fused aromatic rings and are broadly divided into low-molecular-weight (two to three rings) and high-molecular-weight (four or more rings) groups, the latter being more stable and toxic (Nzila, 2018; Stogiannidis and Laane, 2015).

Among these compounds, benzo[a]pyrene (BaP) is of particular concern due to its environmental persistence and carcinogenic potential (Han and Kang, 2020; Nisbet and Lagoy, 1992). Its rigid, hydrophobic structure limits biodegradation and promotes bioaccumulation (Abdel-Shafy and Mansour, 2016; Rentz et al., 2008). Major sources include cigarette smoke, diesel emissions, grilled and smoked foods, and industrial by-products (Boström et al., 2002; Fromberg et al., 2007). Although minor natural emissions occur through volcanic activity and wildfires, anthropogenic

inputs dominate.

BaP exposure in humans has been linked to cancer and developmental, reproductive, and immunotoxic effects (Barnes et al., 2018; Verma et al., 2012). Consequently, BaP is listed among the United States Environmental Protection Agency (USEPA) top ten priority pollutants. Regulatory bodies, including the European Food Safety Agency (EFSA) and the European Union (EU), have set a maximum residue limit of 2 µg/kg in food and 10 ng/L in drinking water (Bortolato et al., 2008; Wang and Guo, 2010). It is classified by the International Agency for Research on Cancer (IARC) as a Group 1 human carcinogen (Zachara et al., 2017), with estimated dietary intake ranging between 6-8 ng/kg body weight per day (Danyi et al., 2009). Elevated levels in foods such as chocolate and smoked cheese (Fromberg et al., 2007) have prompted mitigation efforts, including the Code of Practice for the Reduction of PAH Contamination in Food (Raters and Matissek, 2014).

Given the trace levels at which BaP and other PAHs occur, their accurate quantification requires sensitive and selective analytical methods. Traditional chromatographic approaches such as liquid chromatography with fluorescence detection (LC-FLD) and gas chromatography-mass spectrometry (GC-MS) remain the reference standards but are often time-consuming and solvent-intensive. Therefore, recent advances emphasize the need for faster, greener, and high-throughput alternatives, such as immunoassays, biosensors, and spectroscopic techniques, that offer comparable sensitivity for reliable food safety monitoring. This review, therefore, provides an overview of analytical methodologies for determining PAHs, with a particular focus on BaP in food and beverage matrices. Emphasis is placed on extraction and cleanup procedures, as well as on the instrumental techniques used for detection and quantification.

2. Extraction and cleanup

2.1. Fatty matrices

2.1.1. Liquid matrices

Fatty matrices pose a significant challenge in the analysis of PAHs due to their high lipid content, making the extraction of PAHs from these complex matrices an arduous task (Moret and Conte, 2000). It is essential to eliminate these lipids to achieve lower detection limits and to maintain

the sensitivity of the analytical instruments. The need for high sensitivity of instruments is substantiated by the low amounts of PAHs set as maximum permitted levels in many countries (Simon et al., 2008; Wenzl et al., 2006).

One of the most common fatty food products studied for BaP contamination is edible oil. Common routes of exposure to PAHs through edible oils include solvent evaporation during heating (Bogusz et al., 2004) and the drying of raw materials before oil extraction (Moret and Conte, 2002). Reported methods of extraction and cleanup usually involve sample dilution using *n*-hexane (Moret and Conte, 2000), followed by a liquid-liquid extraction (LLE) step and solid-phase extraction (SPE) cleanup (Barranco et al., 2003; Guillén et al., 2004; Mottier et al., 2000). In contrast, other authors reported a single SPE step after dilution (Luo et al., 2007; Weißhaar, 2002). Typical solvents used for LLE include dimethyl sulfoxide (DMSO), cyclohexane, petroleum ether, and other solvent mixtures.

In some literature, a saponification step is introduced before LLE to lower the lipid content, particularly triacylglycerols. This involves the use of ethanol- or methanol-based solutions of sodium or potassium hydroxide (Moreda et al., 2001; Simon et al., 2008). Although this approach is practical for lipid removal, it has been associated with partial BaP losses due to its distribution in the alcoholic phase (Mottier et al., 2000) and degradation of chemically unstable compounds (Moret and Conte, 2000). Caffeine-assisted complexation of PAHs, followed by disruption with aqueous sodium chloride, has also been explored (Moreda et al., 2001; Moret and Conte, 2000). Although conceptually promising, the method has not advanced to routine application, suggesting limitations in practicality or performance.

In edible oils, following dilution with *n*-hexane, *n*-heptane, or isohexane/butyldimethylether, the extraction of BaP and other PAHs was achieved using LLE (Barranco et al., 2003; Pandey et al., 2004), SPE using silica (Moret and Conte, 2002), humic acid-bonded silica (Luo et al., 2007), and polystyrene/divinyl benzene (PS-DVB) (Weißhaar, 2002). Cleanup was achieved by column chromatography (Pandey et al., 2004), donor-acceptor column chromatography (Barranco et al., 2004), and a variety of SPE cartridges, including C18/C8 (Barranco et al., 2003) and aminopropyl/C18 (Mottier et al., 2000).

Extraction of BaP from olive oil and vegetable oils has also been widely reported in the literature. Solid-phase

microextraction (SPME) is a standard method used for extracting BaP from vegetable oils. This is usually preceded by dilution using *n*-hexane (Purcaro et al., 2007a; Purcaro et al., 2007b). Vichi et al. (2005) reported the application of headspace-solid phase microextraction (HS-SPME) to extract BaP from olive oil. Solid-liquid extraction (SLE) (Ballesteros et al., 2006) and LLE (Ballesteros et al., 2006; Guillén et al., 2004) have also been used to extract PAHs from olive oil. Cleanup can be achieved by using SPE (silica) or Soxhlet (Guillén et al., 2004), thin-layer chromatography (TLC) (Diletti et al., 2005), or gel-permeation chromatography (GPC) (Ballesteros et al., 2006).

A study compared the effectiveness of SPE and matrix solid-phase dispersion (MSPD) for extracting PAHs from olive oil (Bogusz et al., 2004). In MSPD, a small sample (about 0.5 g) is combined with a solid sorbent like C18 and then processed using an SPE cartridge. While MSPD has benefits, such as using less solvent and being easier to use than LLE, it showed lower recovery rates and less consistency than SPE, with relatively high standard deviation (RSD) values.

Milk has received less attention than edible oils in studies of PAHs, despite containing fat, albeit in lower amounts than oils. Like oil matrices, LLE is the primary method used, although it usually requires fewer extraction steps (Grova et al., 2002; Kishikawa et al., 2003; Lutz et al., 2006). Lutz et al. (2006) used a combination of LLE and SPE for cleanup, with specific procedures for PAHs and hydroxy-PAHs. Interestingly, no SPE-based methods were found for the initial extraction of PAHs from milk. Saponification has also been investigated, with ethanol concentration affecting both analyte recovery and matrix interference. Microextraction techniques, such as HS-SPME (Aguinaga et al., 2008) and SPME (Aguinaga et al., 2007), have been used with PDMS-DVB fibers, and SPME involved prior dilution of the sample. While HS-SPME did not work well for higher molecular weight PAHs, it was effective for compounds with up to four aromatic rings and offered better precision than LLE. In summary, both HS-SPME and SPME showed improved recovery compared to traditional LLE methods. Table 1 summarizes the extraction and analytical methods for PAHs in liquid samples.

While traditional LLE and SPE combinations remain reliable for oil matrices, they are laborious and solvent-intensive. Saponification effectively reduces lipid interference but can

cause analyte loss. In contrast, SPME and HS-SPME provide comparable or higher recoveries with improved precision and minimal solvent use. SPE continues to dominate routine analysis, but microextraction techniques offer a greener, more efficient alternative for complex lipid systems.

2.1.2. Solid matrices

In terms of food products, meat and fish are among the most studied sources of BaP and other PAHs. In meat, especially smoked products, PAHs contamination is mainly connected to both traditional and industrial smoking methods. In fish, it is widely agreed that vertebrate fish quickly metabolize PAHs, which limits their accumulation in muscle tissue. However, PAHs can accumulate in fatty tissues, and fish are still vulnerable to environmental exposure.

Chen et al. (1996) developed a method that utilizes ultrasound-assisted extraction (USE) on lyophilized samples. This process includes a cleanup step using SPE with Florisil. They compared this method to a more complicated one that involved saponification with Soxhlet extraction, several LLE steps, and final SPE. While USE provided similar recoveries and took less time and fewer solvents, the Soxhlet method was favored because saponification is crucial for accurate PAH quantification. Similarly, Chiu et al. (1997) highlighted the importance of saponification in their extraction process.

Wang et al. (1999) introduced pressurized liquid extraction (PLE) for PAH analysis in meat. They used a dichloromethane/acetonitrile solvent along with C18 or C8 sorbents and sodium sulfate in the extraction cell. While PLE allowed for some automation, it still required extensive cleanup, which involved sulfuric acid partitioning and Florisil column chromatography. Later studies (Djinovic et al., 2008a; Jira, 2004) improved the method by adding GPC with either column chromatography or SPE. They usually employed *n*-hexane and polymeric styrene-divinylbenzene (DVB) columns to remove lipids. Although GPC effectively reduced lipid content, further cleanup was needed. Jira (2004) proposed GPC as an alternative to saponification, using silica gel chromatography for remaining polar compounds. Adsorption losses of certain PAHs on sea sand and drying agents resulted in their exclusion. Overall, GPC combined with column chromatography provided better recoveries and lower RSDs than GPC with SPE. However, the latter allowed for the detection of a broader range of PAHs (Djinovic et al., 2008a; Djinovic et al., 2008b).

Although Soxhlet extraction has its disadvantages, such as

Table 1. Analytical methods for benzo[a]pyrene in some fatty and non-fatty liquid samples

Matrix	Extraction method	Cleanup	Separation/detection	References
Edible oil (F)	Dilution (n-hexane); LLE	SPE (C18/C8)	LC-FLD	Barranco et al. (2003)
	Dilution (n-hexane)	DACC column; Column chromatography	LC-FLD	Barranco et al. (2004)
	Dilution (n-heptane); LLE (DMSO; cyclohexane; water)	Column chromatography	LC-FLD	Pandey et al. (2004)
Olive oil (F)	SPE (C18 Nucleoprep + Florisil) MSPD (C18 + Florisil)		GC-MS, LP-GC-MS, LC-FLD	Bogusz et al. (2004)
	Dilution (n-hexane); LLE	SPE (silica); Soxhlet; LLE	GC-MS	Guillén et al. (2004)
	HS-SPME		GC-MS	Vichi et al. (2005)
	HS		GC-MS/(MS)	Arrebolá et al. (2006)
Oil, food mixture (F)	PLE	SPE (PS-DVB)	GC-MS/MS	Veyrand et al. (2007)
Olive, olive-pomace oil (F)	SLE or LLE	GPC	GC-MS/MS	Ballesteros et al. (2006)
Vegetable oil (F)	Dilution (n-hexane); SPME		GC-MS	Purcaro et al. (2007a)
	Dilution (n-hexane); SPME		GC × GC-MS	Purcaro et al. (2007b)
Fish oil, fish (F)	Homogenization; Saponification; LLE	SPE (Florisil)	GC-MS/(MS)	Ehrenhauser et al. (2010)
Milk (F)	HS-SPME (PDMS-DVB)		GC-MS	Aguinaga et al. (2008)
	Dilution (water), SPME (PDMS-DVB)		GC-MS	Aguinaga et al. (2007)
	Addition: Sodium oxalate; LLE	Column chromatography	GC-MS	Grova et al. (2002)
	Saponification; LLE		LC-FLD	Kishikawa et al. (2003)
Coffee (NF)	LLE	SPE	LC-FLD	García-Falcón et al. (2005)
	MIP-SPE		LC-FLD	Lai et al. (2004)
Coffee brew (NF)	SPE		LC-FLD	Houessou et al. (2005)
Tea (NF)	SPE		LC-FLD	Kayali-Sayadi et al. (1998)
Beverages (NF)	Addition 10% MeOH; MASE		GC-MS	Rodil et al. (2007)
Sugarcane juice (NF)	SBSE-TD; MASE		GC-MS	Zuin et al. (2006)
Cachaca (NF)	LLE	Column chromatography	LC-FLD	Tfouni et al. (2007)

F, fatty matrices; NF, non-fatty matrices; LLE, liquid-liquid extraction; DMSO, dimethylsulfoxide; SPE, solid-phase extraction; MSPD, matrix solid-phase dispersion; HS, headspace; HS-SPME, headspace solid-phase microextraction; PLE, pressurized liquid extraction; SLE, supported liquid extraction; PDMS-DVB, polydimethylsiloxane/divinylbenzene; MIP-SPE, molecularly imprinted polymer solid-phase extraction; MeOH, methanol; MASE, microwave-assisted solvent extraction; SBSE-TD, stir bar sorptive extraction-thermal desorption; DACC, donor-acceptor complex chromatography; PS-DVB, polystyrene-divinylbenzene; GPC, gel permeation chromatography; LC-LFD, liquid chromatography with fluorescence detector; GC-MS, gas chromatography-mass spectrometry; LP-GC-MS, low pressure-gas chromatography-mass spectrometry; GC-MS/MS, gas chromatography-tandem mass spectrometry; GC × GC-MS, comprehensive two-dimensional gas chromatography coupled with mass spectrometry.

high solvent use, lengthy procedures, and low selectivity, it remains a popular method in PAH analysis due to its effectiveness (Anyakora et al., 2005; Araki et al., 2001; Jánská et al., 2004). Typical solvents include dichloromethane and *n*-hexane. Sample preparation steps, such as lyophilization (Jie and Kai-Xiong, 2007) and homogenization with sodium sulfate (Anyakora et al., 2005; Araki et al., 2001), typically

occur before extraction. Since there are often high levels of co-extracted material, post-extraction cleanup is important. GPC is frequently used (Jánská et al., 2004; Jie and Kai-Xiong, 2007) for this purpose; however, other methods, such as saponification, LLE, and column chromatography, have also been mentioned (Al-Omair and Helaleh, 2004; Araki et al., 2001). However, GPC typically requires chlorinated solvents,

which raise environmental and safety issues. While Soxhlet-based methods provide acceptable recoveries, they often show high relative standard deviations of 2 to 20%, likely due to the complexity and length of the procedures. Saponification followed by LLE steps is less time-consuming than Soxhlet extraction followed by GPC or LLE; however, its recovery results are lower (Perugini et al., 2007).

PLE has become an effective alternative to traditional methods such as Soxhlet and ultrasound-assisted extraction (USE) because it shortens extraction time (Jánská et al., 2004; Martinez et al., 2004; Wang et al., 1999). However, its non-selective nature requires extra cleanup. Wang et al. (1999) found that strong acid treatment during cleanup damaged several PAHs, while a milder acid (9 M H₂SO₄) prevented such losses. Martinez et al. (2004) achieved good recoveries using saponification with a different solvent mix, and they discovered that PLE and USE performed better than Soxhlet in terms of recovery and precision. Similarly, Jánská et al. (2004) noted no significant differences in PAH recovery among the three methods, although PLE showed better repeatability. They recommended using water-miscible solvents in PLE to enhance extraction from moist, fatty matrices like fish.

Microwave-assisted extraction (MAE) combined with saponification has been used to shorten extraction time; however, subsequent SPE cleanup was necessary, limiting analysis to seven PAHs (Pena et al., 2006). Direct SPE or GPC cleanup of MAE extracts has also been employed, yielding satisfactory results on certified reference materials, albeit with limited recovery and precision data (Akpambang et al., 2009; Navarro et al., 2006; Purcaro et al., 2009).

HS-SPME has been applied for PAHs with up to four rings in fish and seafood, using polyacrylate or PDMS-DVB fibers (Aguinaga et al., 2008; Guillén and Errecalde, 2002). Solid samples can be analyzed directly in HS vials or after being mixed with a solvent, but comparative performance data are lacking.

MSPD was employed for the extraction of six PAHs in fish, utilizing sulfuric acid-impregnated silica for lipid removal (Pensado et al., 2005). Although some analytes were retained on the sorbent, recoveries were sufficient and RSDs low, addressing MSPD's usual reproducibility issues. Sulfuric acid is still an effective agent for lipid removal in these matrices.

Ramalhosa et al. (2009) used the QuEChERS method,

initially developed for pesticide analysis, to detect PAHs in fish. This method works well for volatile PAHs because it skips evaporation steps, which reduces losses. It also yields consistent results for heavier PAHs, as confirmed by a certified reference material. QuEChERS is a simpler, more efficient option than traditional techniques such as Soxhlet or LLE, while still delivering good performance.

Smoked cheese, a fatty matrix, has not been studied as much. Reported methods include Soxhlet with GPC (Suchanová et al., 2008) approaches based on LLE (Pagliuca et al., 2003), and saponification (Anastasio et al., 2004), along with SPE cleanup using silica sorbents. Recovery rates range from 52 to 96%. However, volatile compounds often have low recovery rates. This issue is less important because these compounds pose a lower cancer risk (Suchanová et al., 2008). Table 2 summarizes the extraction and analytical methods for PAHs in solid samples.

Soxhlet extraction offers high recovery and robustness but suffers from long run times and high solvent demand. PLE and USE shorten extraction time and enhance reproducibility, but they require additional cleanup steps, such as GPC or SPE. MAE and MSPD reduce solvent usage but often yield lower precision. Overall, PLE and USE balance efficiency and accuracy best, while integrated extraction-cleanup systems remain a future improvement focus.

2.2. Non-fatty matrices

2.2.1. Liquid matrices

Non-fatty liquid foods, such as coffee, tea, alcoholic drinks, and fruit juices, have been tested for BaP and other PAHs. Extracting these substances is usually easier than extracting them from fatty foods because they contain less fat and cause less interference. Common methods include LLE followed by SPE cleanup with silica sorbents (García-Falcón et al., 2005) and LLE with silica gel column chromatography (Tfouni et al., 2007). SPE using reversed-phase or polymeric sorbents must consider PAH solubility and possible adsorption onto glassware. This issue can be mitigated by adding a small amount of organic solvent, such as methanol, acetonitrile, or propan-2-ol.

SPE has been widely applied for PAH analysis in coffee, tea, and spirits using cartridges such as PS-DVB and C18 (Galinaro et al., 2007; Houessou et al., 2006; Kayali-Sayadi et al., 1998). PS-DVB is generally preferred due to π - π

Table 2. Analytical methods for benzo[a]pyrene in some fatty and non-fatty solid samples

Matrix	Extraction method	Cleanup	Separation/detection	References
Meat (F)	Freeze-drying; Soxhlet; LLE	SPE (Florisil)	GC-MS	Chen et al. (1996)
Smoked meat (F)	PLE	GPC	GC-EI-MS	Djinovic et al. (2008)
	Saponification	SPE (Florisil)	LC-UV, LC-FLD, GC-EI-MS	Chiu et al. (1997)
	SPME-DED		GC-MS	Martin and Ruiz (2007)
	PLE	GPC	GC-MS	Jira (2004)
	MAE	SPE (Silica)	LC-FLD	Purcaro et al. (2009)
Fish (F)	Homogenization, Soxhlet	Water addition; LLE; Column chromatography	GC-MS	Araki et al. (2001)
	HS-SPME		GC-MS	Guillén et al. (2002)
	MAE; Centrifugation	SPE (Silica)	LC-FLD	Peña et al. (2006)
	Lyophilization; MSPD	Simultaneous SPE	LC-FLD	Pensado et al. (2005)
	Homogenization; Soxhlet	Column chromatography	GC-MS	Anyakora et al. (2005)
Fish, seafood (F)	QuEChERS		LC-FLD	Ramalhosa et al. (2009)
	Saponification; Water addition; LLE		LC-FLD	Perugini et al. (2007)
	MAE	SPE (Florisil); GPC	GC-MS	Navarro et al. (2006)
Fish (F), palm dates (NF)	Soxhlet	Column chromatography	GC-MS	Al-Omair et al. (2004)
Shellfish (NF)	Freeze-drying; Soxhlet	GPC; Column chromatography	GC-MS	Jie and Kai-Xiong (2007)
Mussel(F)	Lyophilization; PLE	Saponification	GC-MS	Martinez et al. (2004)
Cheese (F)	Saponification; LLE	SPE	LC-FLD	Anastasio et al. (2004)
	Soxhlet	GPC	LC-FLD	Pagliuca et al. (2003)
Fruits, vegetables (NF)	Saponification; LLE	Column chromatography	LC-FLD; GC-MS	Camargo and Toledo (2003)
Foodstuff (NF)	Soxhlet	Column chromatography	LC-FLD	Bordajandi et al. (2004)
Cane sugar (NF)	SLE; LLE	Column chromatography	LC-FLD	Tfouni and Toledo (2007)
Tea leaves (NF)	Ultrasonication	Column chromatography	LC-UV	Lin and Zhu (2004)
	Soxhlet	SPE	GC-EI-MS	Fiedler et al. (2002)
Vegetables (NF)	Soxhlet	SPE	GC-MS	Zohair et al. (2006)

F, fatty matrices; NF, non-fatty matrices; LLE, liquid-liquid extraction; PLE, pressurized liquid extraction; SPME-DED, solid-phase microextraction direct extraction device; MAE, microwave-assisted extraction; HS-SPME, headspace solid-phase microextraction; MSPD, matrix solid-phase dispersion; SPE, solid-phase extraction; GPC, gel permeation chromatography; GC-MS, gas chromatography-mass spectrometry; GC-EI-MS, gas chromatography-electron ionization-mass spectrometry; LC-UV, liquid chromatography with ultraviolet detector; LC-LFD, liquid chromatography with fluorescence detector.

interactions that enhance PAH retention and improve reproducibility compared to C18. Small amounts of methanol or acetonitrile are added to reduce PAH adsorption onto glass or sorbent surfaces, though optimal percentages vary by matrix. Molecularly imprinted polymer SPE (MIP-SPE) has also been used for BaP extraction in coffee, showing superior

recovery compared to C18 (Lai et al., 2004).

HS-SPME has been used for PAH analysis in tea infusions, with PDMS-DVB fibers providing the best results among polar, non-polar, and medium-polarity options (Viñas et al., 2007). Limitations include fiber overloading due to thin coatings (Zuin et al., 2005). Stir bar sorptive extraction

(SBSE) addresses this by offering greater coating capacity, higher adsorption, and reduced co-extracted matrix material, making it more environmentally friendly. SBSE can be coupled with thermal desorption (SBSE-TD) or solvent-assisted desorption, with minimal solvent use. SBSE-TD successfully quantified BaP in sugarcane juice but showed higher RSDs than standard SBSE (Zuin et al., 2006). Membrane-assisted solvent extraction (MASE) has also been applied, allowing monitoring of more PAHs (16 compounds) with improved recoveries and acceptable results for volatile PAHs due to the absence of evaporation steps (Rodil et al., 2007).

In non-fatty liquid samples, SPE using polymeric or MIP sorbents provides excellent selectivity and reproducibility compared to conventional C18. LLE is simpler but less efficient for trace analysis. Miniaturized techniques such as HS-SPME and SBSE minimize solvent use and enable rapid, on-site analysis with comparable sensitivity. Hence, SPE remains the benchmark, but microextraction offers an eco-friendly alternative for high-throughput applications.

2.2.2. Solid matrices

BaP and other PAHs have been identified in a variety of non-fat solid food matrices, including tea leaves (Fiedler et al., 2002; Lin and Zhu, 2004), vegetables (Nieva-Cano et al., 2001; Zohair et al., 2006), fruits (Camargo et al., 2003), bread (Nieva-Cano et al., 2001), sugar (Tfouni and Toledo, 2007), mixed foods (Veyrand et al., 2007), coffee (Houessou et al., 2006), and dates (Al-Omair and Helaleh, 2004). Extraction strategies for these matrices are similar to those for fatty foods but require modifications due to lower lipid content and different matrix compositions.

Classical Soxhlet extraction remains reliable and widely applied for solid samples. Bordajandi et al. (2004) demonstrated consistent recoveries across diverse food types using a Soxhlet-based protocol, though the method is labor-intensive and solvent-demanding. Alternative approaches such as USE and PLE have gained attention for their shorter processing times and reduced solvent requirements. Nieva-Cano et al. (2001) achieved satisfactory recoveries using sonication followed by direct high-performance liquid chromatography (HPLC)-FLD without extensive cleanup, while Camargo et al. (2003) reported comparable efficiency with PLE in fruits and vegetables.

To improve selectivity, a saponification step followed by SPE or GPC is often used to remove pigments, sugars, and other interfering compounds. Houessou et al. (2006) optimized LLE combined with SPE for ground coffee, whereas Tfouni and Toledo (2007) achieved 80-95% recoveries from sugar using n-hexane extraction and silica purification. Studies on vegetables and fruits (Camargo et al., 2003; Zohair et al., 2006) highlight that surface deposition and thermal processing largely influence PAH accumulation rather than intrinsic matrix composition.

Overall, Soxhlet extraction offers robustness and reproducibility but is being progressively replaced by greener, faster techniques such as PLE and USE. These alternatives maintain comparable accuracy while minimizing solvent use and analysis time. Nonetheless, efficient cleanup remains essential to ensure sensitivity and reproducibility. Future work should emphasize miniaturized, solvent-free extractions (e.g., QuEChERS, SPME) and automated detection systems to enhance throughput and support sustainable PAH monitoring in non-fatty solid foods.

3. Detection methods

3.1. Chromatographic method

In recent years, chromatography and mass spectrometry have become more important for analyzing complex chemical mixtures (Jeong et al., 2024). They provide detailed compositional data and highly sensitive measurements. Techniques such as HPLC, GC, and liquid chromatography-mass spectrometry (LC-MS) are commonly used. They work with various detectors, including electron impact ionization (EI), flame ionization (FID), and mass selective (MSD). These tools enable scientists to detect compounds at extremely low concentrations, often at parts per million or even less (Chen et al., 2012). These methods are beneficial for monitoring aromatic compounds such as PAHs. PAHs are persistent in the environment and pose potential health risks. Typically, PAHs are analyzed by LC-FLD or UV-visible detection (LC-UV). GC-MS is also used. These techniques provide the sensitivity and accuracy needed for reliable trace-level detection.

3.1.1. Liquid chromatography with different detectors

LC remains one of the principal techniques for separating

trace-level and non-volatile polar PAHs. However, its resolution is constrained by column efficiency and environmental factors such as temperature and humidity (Kumar et al., 2017). Compared with GC and HPLC, conventional LC provides less analytical detail for individual PAHs or their alkylated derivatives. The integration of advanced detection systems, however, has significantly enhanced its analytical potential.

FLD has become the most widely applied detector for PAH analysis due to its high sensitivity, selectivity, and relatively low cost (Barranco et al., 2003; Galinaro et al., 2007; Moret and Conte, 2002; Poster et al., 2006). It enables variable excitation and emission wavelengths, ideal for fluorescent PAHs such as anthracene and perylene. However, it lacks an adequate response to non-fluorescent compounds such as chrysene and cyclopenta[cd]pyrene, which are better suited to UV detection (Simon et al., 2008). Hybrid LC systems combining FLD with UV-diode array detectors (DAD) have improved compound confirmation and spectral profiling (Miege et al., 1998). LC-FLD has thus been incorporated into official monitoring protocols for food and beverages because it provides an optimal balance between performance, cost, and operational simplicity (Wenzl et al., 2006).

Despite these advantages, FLD faces limitations in selectivity—particularly for distinguishing alkylated PAHs and isotopically labeled compounds that share similar fluorescence properties (Simkó, 2002; Simon et al., 2008). These issues often necessitate confirmatory analysis using GC-MS for compound-specific validation (Camargo et al., 2003; Houessou et al., 2006; Mottier et al., 2000).

Mass spectrometric detection (LC-MS/MS) has emerged as a complementary and more definitive approach, offering improved structural characterization and lower detection limits (Zhang et al., 2015). However, its application to food matrices remains limited due to instrument cost, ionization challenges, and matrix effects (Lien et al., 2007; Robb et al., 2000; Van De Wiele et al., 2004). Alternative ionization methods such as ESI, APCI, and APPI have been evaluated for hydroxy- and non-polar PAHs, showing promise for extending LC applicability (Ehrenhauser et al., 2010; Rey-Salgueiro et al., 2009).

In summary, LC-FLD remains the method of choice for routine PAH screening due to its affordability and robustness. At the same time, LC-MS/MS serves as a confirmatory tool

where higher specificity and quantification accuracy are required.

3.1.2. Gas chromatography with mass spectrometry

GC is widely used for the determination of volatile and semi-volatile nonpolar PAHs. It provides superior separation efficiency and molecular resolution through rapid analyte interaction with the stationary phase. However, its use is limited to thermally stable compounds, as excessive volatility or degradation during injection can compromise accuracy.

Among GC-based techniques, GC-MS has become the preferred analytical platform for PAH determination in food matrices, surpassing LC-FLD in selectivity and structural elucidation (Berset et al., 1999). Its combined separation and mass spectral capabilities enable precise identification of PAHs that lack fluorescence or exhibit weak optical responses, such as cyclopenta[cd]pyrene, naphthalene, acenaphthylene, acenaphthene, and fluorene (Cai et al., 2009). GC-MS has been increasingly adopted in standardized monitoring protocols, including USEPA Method 8100, and in recent analytical studies across diverse matrices (Dinaintang Harikedua et al., 2024; Gómez-Ruiz and Wenzl, 2009; Martin and Ruiz, 2007; Nácher-Mestre et al., 2009).

Several modifications of GC-MS have further improved sensitivity and selectivity. Multi-dimensional GC coupled with quadrupole MS (GC \times GC-qMS) and SPME allows separation of PAH isomers (Lamani et al., 2015), while ultrasound-assisted emulsification microextraction (USAEME) and GC-FID provide reliable quantification in aqueous matrices (Saleh et al., 2009). Similar advancements, such as two-dimensional gas chromatography-sulfur chemiluminescence detector (GC-SCD) for sulfur-containing PAHs (Dijkmans et al., 2014) and microwave-assisted extraction coupled with HS-SPME (Ratola et al., 2012; Ré et al., 2015), have expanded GC's analytical versatility.

GC-MS methods demonstrate high reproducibility and low detection limits (ng·pg range), as shown in smoked meats (Jira, 2004), aquatic organisms (Aguinaga et al., 2007), and beverages (Rodil et al., 2007). Studies comparing extraction and cleanup techniques, such as ASE, GPC, SPE, and MAS, confirm that GPC is often most effective for complex matrices due to its lipid-removal efficiency and reduced matrix interference (Navarro et al., 2006; Zuin et al., 2006).

In summary, GC-MS offers unmatched specificity and sensitivity for PAHs, especially non-fluorescent compounds,

but requires elaborate sample preparation and cleanup compared to LC-FLD. Consequently, LC-FLD remains preferred for rapid routine monitoring, while GC-MS serves as the definitive confirmatory tool for regulatory and trace-level analysis.

3.2. Immunological methods

Regulatory requirements for monitoring a broad spectrum of chemical contaminants in food have driven the need for analytical screening tools that are simple, cost-effective, rapid, sensitive, and capable of detecting multiple analytes simultaneously in a high-throughput, automated format (Wenzl et al., 2006). While chromatographic methods offer high sensitivity and accuracy, they are often time-consuming, labor-intensive, costly, and require extensive sample preparation (Cai et al., 2009; Danyi et al., 2009; Naccari et al., 2008). Consequently, there has been a growing interest in developing alternative screening tools that address these limitations. Among these, immunosensors have emerged as valuable platforms for the rapid and selective detection of BaP in various sample matrices (Boujday et al., 2009; Shimomura et al., 2001).

3.2.1. ELISA-based assays

Enzyme-linked immunosorbent assays (ELISAs) are the most established immunoassays for PAH determination, with proven applicability across environmental, food, and biological samples. Early competitive ELISAs using monoclonal antibodies (MAbs) demonstrated strong specificity and cross-reactivity. Meng et al. (2015) produced a MAb using pyrene-protein conjugates, achieving an impressive detection limit of 65.08 pg/mL and excellent recoveries (99-100%) in water samples. Similarly, Xi et al. (2016) developed an indirect competitive ELISA (ic-ELISA) based on clone 2E12, showing an IC_{50} of 0.779 μ g/L, detection sensitivity of 0.054 μ g/L, and high accuracy in spiked beef samples (recoveries 81-94%). The assay's precision (<6% CV) and minimal cross-reactivity support its potential for food monitoring. Wu et al. (2022) extended the ic-ELISA approach to aquatic products, achieving detection limits of 0.43-0.98 μ g/L and strong correlation with HPLC-FLD results. Jeeno et al. (2024) demonstrated a cost-effective ic-ELISA using IgY antibodies from egg yolk, suitable for BaP screening in grilled meat, though with higher IC_{50} values. Collectively, ELISA-based assays combine simplicity, reproducibility, and

strong quantitative performance, but their dependence on laboratory instrumentation and potential matrix effects limit on-site applicability.

3.2.2. Lateral flow and rapid immunochromatographic assays

To improve portability and speed, lateral flow immunoassays (LFIA) and gold nanoparticle-based immunochromatographic assays (GICA) have been developed for point-of-care detection. Beloglazova et al. (2011) introduced a handheld immunochemical test with detection limits of 4-40 ng/L, validated against HPLC-FLD for food supplements such as garlic and radish. Yuan et al. (2025) advanced this concept by integrating Prussian blue nanoparticles (PBNPs) with monoclonal antibodies into an LFIA platform for the analysis of edible oils. The method achieved detection limits of 0.035-0.106 μ g/kg within 14 minutes and demonstrated up to a 285-fold improvement in sensitivity over conventional assays. Li et al. (2024) further applied a gold nanoparticle-based dual T-line GICA to BaP detection in oilfield chemicals, achieving a broad dynamic range (0.42-300 mg/kg) and excellent recoveries (88-106%) even under harsh conditions.

These portable assays combine ease of use, rapid response, and minimal pre-treatment requirements. However, their semi-quantitative nature and relatively narrower precision windows compared to ELISA still necessitate confirmatory chromatographic analysis for regulatory reporting.

3.2.3. Advanced and hybrid immunoassays

Beyond traditional ELISAs and LFIA systems, hybrid immunoassays integrate nanotechnology, fluorescence enhancement, or molecular design to improve sensitivity and selectivity. Li et al. (2016) reported a label-free fluorescence immunoassay exploiting fluorescence resonance energy transfer (FRET) between BaP and its antibody, enhancing fluorescence by 3.1-fold and yielding a detection limit of 0.06 ng/mL with good recoveries in cereal matrices. Karsunke et al. (2011) developed an automated flow-through biochip chemiluminescence immunoassay (CLEIA), achieving rapid screening (<5 min) with IC_{50} values of 0.31-0.92 μ g/L. Georgiadis et al. (2012) presented a sandwich chemiluminescence immunoassay (SCIA) for PAH-DNA adducts, offering a detection limit of 3 adducts per 10^9 nucleotides and validated

applicability for large-scale population studies. Ma and Zhuang (2018) demonstrated a real-time biotin-streptavidin immuno-PCR (BA-IPCR) for BaP detection in food, reaching an ultra-low limit of 2.85 pg/L with recoveries above 90%. These hybrid formats combine the specificity of immunoassays with the sensitivity of molecular amplification or luminescence detection, enabling trace-level quantification and high-throughput screening.

3.2.4. Supporting and complementary approaches

Complementary advances such as molecularly imprinted solid-phase extraction (MISPE) coupled with ELISA (Pschenitzka et al., 2014) have further improved sample cleanup and selectivity. The MISPE-ELISA combination achieved recoveries of 63-114% in vegetable oils and reduced lipid interference, though minor overestimation occurred due to cross-reactivity among PAHs. Similarly, flow cytometry-based immunoassays (Meimarinou et al., 2010) and handheld immunosensors (Beloglazova et al., 2011) have expanded automation and multiplexing capabilities, allowing simultaneous analysis of multiple PAHs in complex matrices.

Immunological techniques have evolved from laboratory-bound ELISAs to portable, multiplexed, and hybrid systems capable of detecting BaP at sub-ng/L levels. ELISA-based assays remain the benchmark for quantitative accuracy and are well-validated for regulatory use, though they require benchtop instrumentation. Lateral flow assays (LFIA/GICA) provide unmatched portability and speed, offering qualitative or semi-quantitative detection suitable for rapid field screening and preliminary risk assessment. Hybrid assays (CLEIA, BA-IPCR, FRET-based, and SCIA) represent the next generation, achieving ultra-low detection limits (in the pg/L range) and multiplexing capabilities, but often require specialized reagents and instrumentation, which limit widespread use.

Overall, hybrid and nanomaterial-enhanced immunoassays show the most significant promise for commercialization, thanks to their balance of speed, sensitivity, and potential for miniaturization. Nonetheless, ELISA remains the most practical choice for routine laboratory monitoring, while LFIA and biochip formats are emerging as viable tools for on-site screening and rapid decision-making in food safety control.

3.3. Spectroscopic method

Spectroscopic techniques play a vital role in both the qualitative and quantitative analysis of substances, particularly in scientific research. These methods rely on the interaction of electromagnetic radiation with matter, enabling the detection and measurement of compounds by analyzing the energy distribution within molecules at a given moment. PAHs, which consist of conjugated π -electron systems, are ideal for such analyses, especially when distinguishing compounds with similar molecular weights but different chemical structures. Spectroscopy, including UV-Vis, IR, Raman, X-ray fluorescence, atomic absorption, and atomic emission techniques, operates on the principle that molecules absorb or reflect specific wavelengths of light. The intensity of this interaction correlates with the concentration and identity of the analyte, allowing for the detection of even trace amounts, often at sub-ppm levels. These tools are widely used to assess sample purity, determine component percentages in mixtures, and investigate chemical interactions or color changes, providing high accuracy in both qualitative and quantitative investigations.

3.3.1. Raman and surface-enhanced raman spectroscopy (SERS)

Raman and SERS techniques are increasingly being explored for PAH detection due to their high molecular specificity and minimal sample preparation requirements. Liu et al. (2023) demonstrated that integrating Raman spectroscopy with machine learning algorithms enables accurate qualitative and quantitative analysis of BaP in peanut oil, achieving a 97.5% classification accuracy and a correlation coefficient of 0.9932 using random forest modeling. The study highlights how chemometric tools enhance the interpretability of complex Raman data, providing a pathway for automated PAH screening.

Similarly, Chen et al. (2014) reported the Raman and SERS spectra of seven PAHs, supported by density functional theory (DFT) calculations to assign vibrational modes. These findings supply valuable spectral fingerprints for method standardization. Costa et al. (2006) improved SERS substrate stability and reproducibility by introducing self-assembled monolayers (SAMs) on gold films, reducing analyte degradation and enabling detection in the ppm range. Gu et al. (2013) employed a metal “sandwich” substrate with silver cavities and 1,10-decanedithiol linkers, achieving nanomolar detection

limits for anthracene and pyrene. Guerrini et al. (2009) enhanced PAH sensitivity using viologen-functionalized silver nanoparticles (AgNPs), achieving zeptomole detection levels, while Fu et al. (2015) quantified trace BaP levels (1-5 $\mu\text{g/L}$) in oils using inositol hexaphosphate-stabilized gold nanoparticles (AuNPs).

Across studies, SERS-based detection provides ultra-high sensitivity, rapid analysis, and minimal sample pretreatment. Functionalized metallic nanostructures significantly enhance Raman signals and improve selectivity toward hydrophobic PAHs. Nonetheless, variability in substrate fabrication and the absence of standardized calibration protocols hinder reproducibility and regulatory acceptance. Integrating chemometric and machine learning models enhances analytical reliability, but further validation across food matrices is required for routine application.

3.3.2. Fluorescence spectroscopy

Fluorescence-based methods offer high sensitivity for detecting BaP due to its strong native fluorescence and ability to form stable excimers in organic matrices. Orfanakis et al. (2023) introduced an extraction-free fluorescence approach for BaP detection in extra virgin olive oil (EVOO), achieving ppb-level sensitivity consistent with EU regulatory limits. Their partial least squares (PLS) regression model confirmed the method's robustness and suitability for rapid quality control. Similarly, García-Falcón et al. (2000) combined microwave-assisted extraction and saponification with second-derivative synchronous spectrofluorimetry, attaining low detection (0.05 mg/kg) and quantification limits (0.12 mg/kg) and recoveries near 90%.

Li et al. (2011) enhanced PAH resolution using nonlinear variable-angle synchronous fluorescence scanning, allowing simultaneous quantification of BaP, benzo[k]fluoranthene, and anthracene in tea with detection limits of 0.18-0.89 $\mu\text{g/kg}$ and recoveries up to 116%. Bortolato et al. (2008) developed a solvent-free fluorescence technique using nylon membranes coupled with chemometric modeling (PARAFAC and U-PLS/RBL), achieving the quantification of BaP and dibenzo[a,h]anthracene at levels below 10 ng/L, even in the presence of complex PAH mixtures. Andrade Eiroa et al. (2000) further demonstrated that second-derivative synchronous luminescence (SDCESL) surpasses constant-wavelength approaches in terms of precision and detection limit (0.007 ng/mL), fully complying with EU drinking water directives.

Fluorescence spectroscopy remains one of the most sensitive and accessible tools for BaP detection, capable of meeting or exceeding regulatory thresholds in food and environmental samples. Its significant advantages lie in rapidity, low cost, and minimal solvent use. However, spectral overlap and matrix fluorescence can complicate quantification in complex samples. Chemometric algorithms have mitigated these limitations, suggesting that fluorescence spectroscopy is a viable method for high-throughput screening when confirmatory chromatographic methods are impractical.

3.3.3. Infrared spectroscopy

Infrared (IR) spectroscopy provides complementary structural and compositional information, especially useful for characterizing PAH molecular features and predicting their environmental behavior. Tommasini et al. (2016) analyzed 51 PAHs and correlated mid-IR absorption bands (600-900 cm^{-1}) with edge topology and hydrogen connectivity using DFT simulations. The identification of vibrational patterns (SOLO, DUO, TRIO, and QUATRO) provides a framework for structure-spectra relationships and the modeling of graphene-like edge structures. Izawa et al. (2014) examined near-IR reflectance spectra of 47 PAHs and identified diagnostic overtone regions (880-1,860 nm) sensitive to ring connectivity and heteroatom substitution, offering potential for non-destructive classification. Zhang et al. (2016) applied mid-IR spectroscopy coupled with a hybrid chemometric algorithm (DPSO-WPT-PLS) to determine BaP in cigarette smoke, achieving superior predictive accuracy compared with conventional PLS methods and demonstrating the feasibility of real-time monitoring in tobacco quality control.

Infrared-based approaches enable molecular fingerprinting and non-destructive quantification of PAHs in complex matrices. The integration of chemometrics and machine learning enhances predictive capability, though sensitivity remains lower than fluorescence or SERS techniques. IR spectroscopy is best suited for structural elucidation, qualitative screening, and complementing other detection platforms rather than serving as a standalone quantitative tool.

In general, spectroscopic methods, particularly fluorescence, Raman/SERS, and IR, offer rapid, solvent-free, and environmentally sustainable alternatives to chromatographic analyses. Their key advantages include minimal sample preparation, reduced cost, and suitability for real-time, *in situ* monitoring. However, challenges remain regarding quantitative

standardization, inter-laboratory reproducibility, and matrix-specific interference, which currently limit their integration into official regulatory frameworks. Fluorescence spectroscopy is the most mature for regulatory use, with demonstrated compliance with EU BaP limits and validated correlation to chromatographic standards (García-Falcón et al., 2000; Orfanakis et al., 2023). Raman and SERS methods show extraordinary sensitivity and potential for miniaturization but require standardized substrate fabrication and calibration models before widespread adoption. Infrared spectroscopy, while non-destructive and information-rich, remains primarily a complementary tool for qualitative and structural analysis.

Future progress will depend on the development of harmonized validation protocols, portable sensor integration, and chemometric-assisted calibration models to ensure reproducibility and regulatory acceptance. Overall, spectroscopic methods represent a rapidly advancing frontier in PAH analysis, bridging the gap between laboratory-based confirmation and field-deployable screening systems.

4. Conclusions

The detection and quantification of PAHs, particularly BaP, in food remain critical for public health protection and regulatory compliance. Extraction and cleanup efficiency largely depend on matrix composition, especially lipid content. Traditional methods such as Soxhlet extraction, LLE, and SPE remain reliable but are time- and solvent-intensive. Modern alternatives like PLE, UAE, MAE, and QuEChERS offer faster, greener, and more sustainable options, though performance differences across matrices highlight the need for systematic cross-validation.

Chromatographic techniques, including LC-FLD and GC-MS or GC-MS/MS, continue to serve as the benchmark for PAH quantification. LC-FLD is cost-effective for routine use, whereas GC-MS provides superior selectivity for confirmatory analysis. However, both methods are resource-intensive and unsuitable for rapid screening. As a result, immunological and spectroscopic methods have gained attention as complementary tools for large-scale or field-based monitoring.

Immunoassays such as ELISA, LFIA, and CLEIA combine high specificity, rapid turnaround, and affordability, enabling high-throughput screening. Spectroscopic techniques, including fluorescence, Raman, and IR spectroscopy, offer solvent-free,

non-destructive detection with increasing sensitivity through nanomaterial enhancement and chemometric modeling. Despite these advantages, their broader regulatory adoption is limited by variability, matrix dependence, and the lack of standardized validation.

Key gaps persist in harmonized method validation across food matrices, inter-laboratory reproducibility, and unified reporting of analytical performance parameters. Addressing these limitations requires standardized reference materials, cross-platform calibration protocols, and performance criteria aligned with international standards (ISO, AOAC, Codex).

Future PAH monitoring will benefit from integrating rapid screening and confirmatory platforms. Hybrid systems combining microextraction, portable immunoassays, and spectroscopic readouts, supported by chemometrics and machine learning, could achieve accurate, automated, and real-time contamination assessment. Moreover, aligning analytical workflows with green chemistry principles will reduce solvent use, waste, and energy demand.

In conclusion, while chromatographic methods remain indispensable for confirmation, rapid and sustainable tools such as immunoassays and spectroscopic sensors are poised to transform PAH analysis. The future lies in developing harmonized, high-throughput, and data-driven analytical systems that merge laboratory precision with field-level applicability.

Funding

This research was supported by a grant from the Seoul National University of Science and Technology.

Acknowledgements

The authors wish to appreciate Seoul National University of Science and Technology for its support towards this work.

Conflict of interests

The authors declare no potential conflicts of interest.

Author contributions

Conceptualization: Lee JG. Methodology: Akinboye AJ. Writing - original draft: Akinboye AJ. Writing - review & editing: Lee JG.

Ethics approval

This article does not require IRB/IACUC approval because

there are no human and animal participants.

ORCID

Adebayo J. Akinboye (First author)

<https://orcid.org/0000-0003-0549-8867>

Joon-Goo Lee (Corresponding author)

<https://orcid.org/0000-0003-3617-5518>

References

Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health, and remediation. *Egypt J Pet*, 25, 107-123 (2016)

Aguinaga N, Campillo N, Viñas P, Hernández-Córdoba M. A headspace solid-phase microextraction procedure coupled with gas chromatography-mass spectrometry for the analysis of volatile polycyclic aromatic hydrocarbons in milk samples. *Anal Bioanal Chem*, 391, 753-758 (2008)

Aguinaga N, Campillo N, Viñas P, Hernández-Córdoba M. Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry. *Anal Chim Acta*, 596, 285-290 (2007)

Akpambang VOE, Purcaro G, Lajide L, Amoo IA, Conte LS, Moret S. Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. *Food Addit Contam Part A*, 26, 1096-1103 (2009)

Al-Omair A, Helaleh MIH. Selected-ion storage GC-MS analysis of polycyclic aromatic hydrocarbons in palm dates and tuna fish. *Chromatographia*, 59, 715-719 (2004)

Anastasio A, Mercogliano R, Vollano L, Pepe T, Cortesi ML. Levels of benzo[a]pyrene (BaP) in 'mozzarella di bufala campana' cheese smoked according to different procedures. *J Agric Food Chem*, 52, 4452-4455 (2004)

Andrade Eiroa A, Vázquez Blanco E, López Mahía P, Muniategui Lorenzo S, Prada Rodríguez D. Resolution of benzo[a]pyrene in complex mixtures of other polycyclic aromatic hydrocarbons. Comparison of two spectrofluorimetric methods applied to water samples. *Analyst*, 125, 1321-1326 (2000)

Anyakora C, Ogbeche A, Palmer P, Coker H. Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement. *J Chromatogr A*, 1073, 323-330 (2005)

Araki RY, Dodo GH, Reimer SH, Knight MM. Protocol for the determination of selected neutral and acidic semi-volatile organic contaminants in fish tissue. *J Chromatogr A*, 923, 177-185 (2001)

Arrebola FJ, Frenich AG, González Rodríguez MJ, Bolaños, PP, Martínez Vidal JL. Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography-mass spectrometry. *J Mass Spectrom*, 41, 822-829 (2006)

Ballesteros E, García Sánchez A, Ramos Martos N. Simultaneous multidetermination of residues of pesticides and polycyclic aromatic hydrocarbons in olive and olive-pomace oils by gas chromatography/ tandem mass spectrometry. *J Chromatogr A*, 1111, 89-96 (2006)

Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. *Biochem Soc Trans*, 46, 1213-1224 (2018)

Barranco A, Alonso-Salces RM, Bakkali A, Berrueta LA, Gallo B, Vicente F, Sarobe M. Solid-phase cleanup in the liquid chromatographic determination of polycyclic aromatic hydrocarbons in edible oils. *J Chromatogr A*, 988, 33-40 (2003)

Barranco A, Alonso-Salces RM, Corta E, Berrueta LA, Gallo B, Vicente F, Sarobe M. Comparison of donor-acceptor and alumina columns for the cleanup of polycyclic aromatic hydrocarbons from edible oils. *Food Chem*, 86, 465-474 (2004)

Beloglazova NV, Goryacheva IY, De Saeger S, Scippo ML, Niessner R, Knopp D. New approach to quantitative analysis of benzo[a]pyrene in food supplements by an immunochemical column test. *Talanta*, 85, 151-156 (2011)

Berset JD, Ejem M, Holzer R, Lischer P. Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. *Anal Chim Acta*, 383, 263-275 (1999)

Bogusz MJ, El Hajj SA, Ehaideb Z, Hassan H, Al-Tufail M. Rapid determination of benzo(a)pyrene in olive oil samples with solid-phase extraction and low-pressure, wide-bore gas chromatography-mass spectrometry and fast liquid chromatography with fluorescence detection. *J Chromatogr A*, 1026, 1-7 (2004)

Bordajandi LR, Gómez G, Abad E, Rivera J, Del Mar Fernandez-Baston M, Blasco J, González MJ. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), Heavy Metals (Cu, Cd, Zn, Pb, and Hg), and Arsenic in Food Samples from Huelva (Spain): Levels and Health Implications. *J Agric Food Chem*, 52, 992-1001 (2004)

Bortolato SA, Arancibia JA, Escandar GM. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo[a]pyrene and dibenz[a,h]anthracene at parts-per-trillion levels in the presence of the remaining EPA

PAH priority pollutants as interferences. *Anal Chem*, 80, 8276-8286 (2008)

Boujday S, Gu C, Girardot M, Salmain M, Pradier CM. Surface IR applied to rapid and direct immunosensing of environmental pollutants. *Talanta*, 78, 165-170 (2009)

Cai SS, Syage JA, Hanold KA, Balogh MP. Ultra performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry for high-sensitivity and high-throughput analysis of U.S. Environmental Protection Agency 16 priority pollutants polynuclear aromatic hydrocarbons. *Anal Chem*, 81, 2123-2128 (2009)

Camargo CR, Toledo MCF. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. *Food Control*, 14, 49-53 (2003)

Chen BH, Lin YS. Formation of polycyclic aromatic hydrocarbons during processing of duck meat. *J Agric Food Chem*, 45, 1394-1403 (1997)

Chen BH, Wang CY, Chiu CP. Evaluation of analysis of polycyclic aromatic hydrocarbons in meat products by liquid chromatography. *J Agric Food Chem*, 44, 2244-2251 (1996)

Chen J, Huang YW, Zhao Y. Characterization of polycyclic aromatic hydrocarbons using raman and surface enhanced raman spectroscopy. *J Raman Spectrosc*, 46, 64-69 (2014)

Chen YH, Xia EQ, Xu XR, Li S, Ling WH, Wu S, Deng GF, Zou ZF, Zhou J, Li H Bin. Evaluation of benzo[a]pyrene in food from China by high-performance liquid chromatography-fluorescence detection. *Int J Environ Res Public Health*, 9, 4159-4169 (2012)

Chiu CP, Lin YS, Chen BH. Comparison of GC-MS and HPLC for overcoming matrix interferences in the analysis of PAHs in smoked food. *Chromatographia*, 44, 497-504 (1997)

Costa JCS, Sant'Ana AC, Corio P, Temperini MLA. Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. *Talanta*, 70, 1011-1016 (2006)

Danyi S, Brose F, Brasseur C, Schneider YJ, Larondelle Y, Pussemier L, Robbins J, De Saeger S, Maghuin-Rogister G, Scippo ML. Analysis of EU priority polycyclic aromatic hydrocarbons in food supplements using high performance liquid chromatography coupled to an ultraviolet, diode array or fluorescence detector. *Anal Chim Acta*, 633, 293-299 (2009)

Dijkmans T, Van Geem KM, Djokic MR, Marin GB. Combined comprehensive two-dimensional gas chromatography analysis of polycyclic aromatic hydrocarbons/polyaromatic sulfur-containing hydrocarbons (PAH/PASH) in complex matrices. *Ind Eng Chem Res*, 53, 15436-15446 (2014)

Diletti G, Scorticini G, Scarpone R, Gatti G, Torreti L, Migliorati G. Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography-mass spectrometry. *J Chromatogr A*, 1062, 247-254 (2005)

Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in traditional and industrial smoked beef and pork ham from Serbia. *Eur Food Res Technol*, 227, 1191-1198 (2008a)

Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. *Meat Sci*, 80, 449-456 (2008b)

Ehrenhauser FS, Wornat MJ, Valsaraj KT, Rodriguez P. Design and evaluation of a dopant-delivery system for an orthogonal atmospheric-pressure photoionization source and its performance in the analysis of polycyclic aromatic hydrocarbons. *Rapid Commun Mass Spectrom*, 24, 1351-1357 (2010)

Fiedler H, Cheung CK, Wong MH. PCDD/PCDF, chlorinated pesticides and PAH in Chinese teas. *Chemosphere*, 46, 1429-1433 (2002)

Fromberg A, Højgård A, Duedahl-Olesen L. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction cleanup. *Food Addit Contam*, 24, 758-767 (2007)

Fu S, Guo X, Wang H, Yang T, Wen Y, Yang H. Functionalized Au nanoparticles for label-free Raman determination of ppb level benzopyrene in edible oil. *Sens Actuators B Chem*, 212, 200-206 (2015)

Galinaro CA, Cardoso DR, Franco DW. Profiles of polycyclic aromatic hydrocarbons in Brazilian sugar cane spirits: Discrimination between cachaças produced from nonburned and burned sugar cane crops. *J Agric Food Chem*, 55, 3141-3147 (2007)

García-Falcón MS, Cancho-Grande B, Simal-Gándara J. Minimal cleanup and rapid determination of polycyclic aromatic hydrocarbons in instant coffee. *Food Chem*, 90, 643-647 (2005)

García-Falcón MS, Simal-Gándara S, Carril-González-Barros ST. Analysis of benzo[a]pyrene in spiked fatty foods by second derivative synchronous spectrofluorimetry after microwave-assisted treatment of samples. *Food Addit Contam*, 17, 957-964 (2000)

Georgiadis P, Kovács K, Kaila S, Makedonopoulou P, Anna L, Poirier MC, Knudsen LE, Schoket B, Kyrtopoulos SA. Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons. *Mutagenesis*, 27, 589-597 (2012)

Gómez-Ruiz JÁ, Wenzl T. Evaluation of gas chromatography columns for the analysis of the 15 + 1 EU-priority polycyclic aromatic hydrocarbons (PAHs). *Anal Bioanal*

Chem, 393, 1697-1707 (2009)

Grova N, Feidt C, Crépineau C, Laurent C, Lafargue PE, Hachimi A, Ryden G. Detection of polycyclic aromatic hydrocarbon levels in milk collected near potential contamination sources. *J Agric Food Chem*, 50, 4640-4642 (2002)

Gu X, Tian S, Zhou Q, Adkins J, Gu Z, Li X, Zheng J. SERS detection of polycyclic aromatic hydrocarbons on a bowl-shaped silver cavity substrate. *RSC Adv*, 3, 25989-25996 (2013)

Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S. Nanosensors based on viologen functionalized silver nanoparticles: Few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. *Anal Chem*, 81, 1418-1425 (2009)

Guillén MD, Errecalde MC. Volatile components of raw and smoked black bream (*Brama raii*) and rainbow trout (*Oncorhynchus mykiss*) studied by means of solid phase microextraction and gas chromatography/mass spectrometry. *J Sci Food Agric*, 82, 945-952 (2002)

Guillén MD, Sopelana P, Palencia G. Polycyclic aromatic hydrocarbons and olive pomace oil. *J Agric Food Chem*, 52, 2123-2132 (2004)

Han CH, Kang NJ. Identification of the MMP-1 regulation mechanism of benzopyrene, polycyclic aromatic hydrocarbons in foods. *Food Sci Preserv*, 27, 627-634 (2020)

Harikedua SD, Saragih ED, Mongi EL, Damongilala LJ, Salindeho N, Adeleida Dien H, Taher N, Lohoo HJ, Siby MS. Pre-cooking and liquid smoke affect the physicochemical and microbiological quality and polyhydroxy aromatic hydrocarbon (PAH) content in smoked skipjack tuna (*Katsuwonus pelamis* L.). *Food Sci Preserv*, 31, 210-217 (2024)

Houessou JK, Delteil C, Camel V. Investigation of sample treatment steps for the analysis of polycyclic aromatic hydrocarbons in ground coffee. *J Agric Food Chem*, 54, 7413-7421 (2006)

Izawa MRM, Applin DM, Norman L, Cloutis EA. Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs). *Icarus*, 237, 159-181 (2014)

Jánská M, Tomaniová M, Hajšlová J, Kocourek V. Appraisal of 'classic' and 'novel' extraction procedure efficiencies for the isolation of polycyclic aromatic hydrocarbons and their derivatives from biotic matrices. *Anal Chim Acta*, 520, 93-103 (2004)

Jeeno P, Yadoung S, Thongkham M, Yana P, Jaitham U, Ounjaijean S, Xu ZL, Srivarm K, Hongsibsong S. In-house immunoglobulin Y-based immunoassay for detecting benzo[a]pyrene in grilled pork samples. *Biosensors*, 14, 588 (2024)

Jeong J, Kim G, Lee JG. A review of food contamination with nitrated and oxygenated polycyclic aromatic hydrocarbons: Toxicity, analysis, occurrence, and risk assessment. *Food Sci Biotechnol*, 33, 2261-2274 (2024)

Jie F, Kai-Xiong W. Multiresidual analysis of organochlorine pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine shellfishes by gas chromatography-ion trap mass spectrometry. *Chin J Anal Chem*, 35, 1607-1613 (2007)

Jira W. A GC/MS method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. *Eur Food Res Technol*, 218, 208-212 (2004)

Karsunke XYZ, Pschenitzka M, Rieger M, Weber E, Niessner R, Knopp D. Screening and characterization of new monoclonal anti-benzo[a]pyrene antibodies using automated flow-through microarray technology. *J Immunol Methods*, 371, 81-90 (2011)

Kayali-Sayadi MN, Rubio-Barroso S, Cuesta-Jimenez MP, Polo-Díez LM. Rapid determination of polycyclic aromatic hydrocarbons in tea infusion samples by high-performance liquid chromatography and fluorimetric detection based on solid-phase extraction. *Analyst*, 123, 2145-2148 (1998)

Kishikawa N, Wada M, Kuroda N, Akiyama S, Nakashima K. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. *J Chromatogr B*, 789, 257-264 (2003)

Kumar S, Negi S, Maiti P. Biological and analytical techniques used for detection of polycyclic aromatic hydrocarbons. *Environ Sci Pollut Res Int*, 24, 25810-25827 (2017)

Lai JP, Niessner R, Knopp D. Benzo[a]pyrene imprinted polymers: Synthesis, characterization and SPE application in water and coffee samples. *Anal Chim Acta*, 522, 137-144 (2004)

Lamani X, Horst S, Zimmermann T, Schmidt TC. Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GC_xGC-qMS). *Anal Bioanal Chem*, 407, 241-252 (2015)

Li J, Jiang L, Shu Y, Song S, Xu L, Kuang H, Xu C, Guo L. Quantitative immunochromatographic assay for rapid and cost-effective on-site detection of benzo[a]pyrene in oilfield chemicals. *J Hazard Mater*, 469, 134100 (2024)

Li N, Li XY, Zou ZX, Lin LR, Li YQ. A novel baseline-correction method for standard addition based derivative spectra and its application to quantitative analysis of benzo(a)pyrene in vegetable oil samples. *Analyst*, 136, 2802-2810 (2011)

Li T, Choi YH, Shin YB, Kim HJ, Kim MG. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo[a]pyrene (BaP) in aqueous solutions.

Chemosphere, 150, 407-413 (2016)

Lien GW, Chen CY, Wu CF. Analysis of polycyclic aromatic hydrocarbons by liquid chromatography/ tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray ionization with tropylium post-column derivatization. *Rapid Commun Mass Spectrom*, 21, 3694-3700 (2007)

Lin D, Zhu L. Polycyclic aromatic hydrocarbons: Pollution and source analysis of a black tea. *J Agric Food Chem*, 52, 8268-8271 (2004)

Liu W, Sun S, Liu Y, Deng H, Hong F, Liu C, Zheng L. Determination of benzo(a)pyrene in peanut oil based on Raman spectroscopy and machine learning methods. *Spectrochim Acta A Mol Biomol Spectrosc*, 299, 122806 (2023)

Luo D, Yu QW, Yin HR, Feng YQ. Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils. *Analytica Chimica Acta*, 588, 261-267 (2007)

Lutz S, Feidt C, Monteau F, Rychen G, Le Bizec B, Jurjanz S. Effect of exposure to soil-bound polycyclic aromatic hydrocarbons on milk contaminations of parent compounds and their monohydroxylated metabolites. *J Agric Food Chem*, 54, 263-268 (2006)

Ma X, Zhang T, Wang X, Zhang T, Zhang R, Xu Z, Ma M, Ma Y, Shi F. Nanoparticles based on prussian blue for biosensor applications: A review. *ACS Appl Nano Mater*, 6, 22568-22593 (2023)

Ma Z, Zhuang H. A highly sensitive real-time immuno-PCR assay for detecting benzo[a]pyrene in food samples by application of biotin-streptavidin system. *Food Anal Methods*, 11, 862-872 (2018)

Martin D, Ruiz J. Analysis of polycyclic aromatic hydrocarbons in solid matrixes by solid-phase microextraction coupled to a direct extraction device. *Talanta*, 71, 751-757 (2007)

Martinez E, Gros M, Lacorte S, Barceló D. Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. *J Chromatogr A*, 1047, 181-188 (2004)

Meimardou A, Haasnoot W, Noteboom L, Mintzas D, Pulkabrova J, Hajslová J, Nielen MWF. Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food. *Anal Chim Acta*, 672, 9-14 (2010)

Meng XY, Li YS, Zhou Y, Zhang YY, Yang L, Qiao B, Wang NN, Hu P, Lu SY, Ren HL, Liu ZS, Zhang JH, Wang XR. An enzyme-linked immunosorbent assay for detection of pyrene and related polycyclic aromatic hydrocarbons. *Anal Biochem*, 473, 1-6 (2015)

Miege C, Dugay J, Hennion MC. Optimization and validation of solvent and supercritical-fluid extractions for the trace-determination of polycyclic aromatic hydrocarbons in sewage sludges by liquid chromatography coupled to diode-array and fluorescence detection. *J Chromatogr A*, 823, 19-30 (1998)

Moreda W, Perez-Camino MC, Cert A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. *J Chromatogr A*, 936, 159-171 (2001)

Moret S, Conte LS. A rapid method for polycyclic aromatic hydrocarbon determination in vegetable oils. *J Sep Sci*, 25, 96-100 (2002)

Moret S, Conte LS. Polycyclic aromatic hydrocarbons in edible fats and oils: Occurrence and analytical methods. *J Chromatogr A*, 882, 245-253 (2000)

Mottier P, Parisod V, Turesky RJ. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. *J Agric Food Chem*, 48, 1160-1166 (2000)

Naccari C, Cristani M, Licata P, Giofrè F, Trombetta D. Levels of benzo[a]pyrene and benzo[a]anthracene in smoked 'provola' cheese from calabria (Italy). *Food Addit Contam Part B Surveill*, 1, 78-84 (2008)

Nácher-Mestre J, Serrano R, Portolés-Nicolau T, Hernández F, Benedito-Palos L, Pérez-Sánchez J. A reliable analytical approach based on gas chromatography coupled to triple quadrupole and time-of-flight mass analyzers for the determination and confirmation of polycyclic aromatic hydrocarbons in complex matrices from aquaculture activities. *Rapid Commun Mass Spectrom*, 23, 2075-2086 (2009)

Navarro P, Cortazar E, Bartolomé L, Deusto M, Raposo JC, Zuloaga O, Arana G, Etxebarria N. Comparison of solid phase extraction, saponification and gel permeation chromatography for the cleanup of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons. *J Chromatogr A*, 1128, 10-16 (2006)

Nieva-Cano MJ, Rubio-Barroso S, Santos-Delgado MJ. Determination of PAH in food samples by HPLC with fluorimetric detection following sonication extraction without sample cleanup. *Analyst*, 126, 1326-1331 (2001)

Nisbet ICT, Lagoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). *Regul Toxicol Pharmacol*, 16, 290-300 (1992)

Nzila A. Current status of the degradation of aliphatic and aromatic petroleum hydrocarbons by thermophilic microbes and future perspectives. *Int J Environ Res Public Health*, 15, 2782 (2018)

Orfanakis E, Koumentaki A, Zoumi A, Philippidis A, Samartzis PC, Velegrakis M. Rapid detection of benzo[a]pyrene in extra virgin olive oil using fluorescence spectroscopy. *Molecules*, 28, 4386 (2023)

Pagliuca G, Gazzotti T, Zironi E, Serrazanetti GP, Mollica D, Rosmini R. Determination of high molecular mass polycyclic aromatic hydrocarbons in a typical Italian

smoked cheese by HPLC-FL. *J Agric Food Chem*, 51, 5111-5115 (2003)

Pandey MK, Mishra KK, Khanna SK, Das M. Detection of polycyclic aromatic hydrocarbons in commonly consumed edible oils and their likely intake in the Indian population. *J Am Oil Chem Soc*, 81, 1131-1136 (2004)

Pena T, Pensado L, Casais C, Mejuto C, Phan-Tan-Luu R, Cela R. Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples. *J Chromatogr A*, 1121, 163-169 (2006)

Pensado L, Casais MC, Mejuto MC, Cela R. Application of matrix solid-phase dispersion in the analysis of priority polycyclic aromatic hydrocarbons in fish samples. *J Chromatogr A*, 1077, 103-109 (2005)

Perugini M, Visciano P, Manera M, Turno G, Lucisano A, Amorena M. Polycyclic aromatic hydrocarbons in marine organisms from the Gulf of Naples, Tyrrhenian Sea. *J Agric Food Chem*, 55, 2049-2054 (2007)

Poster DL, Schantz MM, Sander LC, Wise SA. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. *Anal Bioanal Chem*, 386, 859-881 (2006)

Pschenitzka M, Hackenberg R, Niessner R, Knopp D. Analysis of benzo[a]pyrene in vegetable oils using molecularly imprinted solid phase extraction (MISPE) coupled with enzyme-linked immunosorbent assay (ELISA). *Sensors (Switzerland)*, 14, 9720-9737 (2014)

Purcaro G, Moret S, Conte LS. Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. *Meat Sci*, 81, 275-280 (2009)

Purcaro G, Moret S, Conte LS. Rapid validated method for the analysis of benzo[a]pyrene in vegetable oils by using solid-phase microextraction-gas chromatography-mass spectrometry. *J Chromatogr A*, 1176, 231-235 (2007a)

Purcaro G, Morrison P, Moret S, Conte LS, Marriott PJ. Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. *J Chromatogr A*, 1161, 284-291 (2007b)

Ramalhosa MJ, Paíga P, Morais S, Delerue-Matos C, Oliveira MBPP. Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. *J Sep Sci*, 32, 3529-3538 (2009)

Raters M, Matissek R. Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method. *J Agric Food Chem*, 62, 10666-10671 (2014)

Ratola N, Herbert P, Alves A. Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees. *Anal Bioanal Chem*, 403, 1761-1769 (2012)

Ré N, Kataoka VMF, Cardoso CAL, Alcantara GB, De Souza JBG. Polycyclic aromatic hydrocarbon concentrations in gas and particle phases and source determination in atmospheric samples from a semiurban area of Dourados, Brazil. *Arch Environ Contam Toxicol*, 69, 69-80 (2015)

Rentz JA, Alvarez PJJ, Schnoor JL. Benzo[a]pyrene degradation by *Sphingomonas yanoikuyae* JAR02. *Environ Pollut*, 151, 669-677 (2008)

Rey-Salgueiro L, Martínez-Carballo E, García-Falcón MS, González-Barreiro C, Simal-Gándara J. Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. *Food Chem*, 115, 814-819 (2009)

Robb DB, Covey TR, Bruins AP. Atmospheric pressure photoionization: An ionization method for liquid chromatography-mass spectrometry. *Anal Chem*, 72, 3653-3659 (2000)

Rodil R, Schellin M, Popp P. Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection-gas chromatography-mass spectrometric detection. *J Chromatogr A*, 1163, 288-297 (2007)

Saleh A, Yamini Y, Faraji M, Rezaee M and Ghambaryan M. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. *J Chromatogr A*, 1216, 6673-6679 (2009)

Shimomura M, Nomura Y, Zhang W, Sakino M, Lee KH, Ikebukuro K, Karube I. Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenyls and atrazine. *Anal Chim Acta*, 434, 223-230 (2001)

Simkó PS. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. *J Chromatogr B*, 770, 3-18 (2002)

Simon R, Ruiz JAG, Von Holst C, Wenzl T, Anklam E. Results of a European inter-laboratory comparison study on the determination of EU priority polycyclic aromatic hydrocarbons (PAHs) in edible vegetable oils. *Anal Bioanal Chem*, 391, 1397-1408 (2008)

Stogiannidis E, Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. *Rev Environ Contam T*, 234, 49-133 (2015)

Suchanová M, Hajšlová J, Tomaniová M, Kocourek V, Babička L. Polycyclic aromatic hydrocarbons in smoked cheese. *J Sci Food Agric*, 88, 1307-1317 (2008)

Tfouni SAV, Machado RMD, Camargo MCR, Vitorino SHP,

Vicente E, Toledo MCF. Determination of polycyclic aromatic hydrocarbons in cachaça by HPLC with fluorescence detection. *Food Chem.*, 101, 334-338 (2007)

Tfouni SAV, Toledo MCF. Determination of polycyclic aromatic hydrocarbons in cane sugar. *Food Control*, 18, 948-952 (2007)

Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. *Spectrochim Acta A Mol Biomol Spectrosc*, 152, 134-148 (2016)

Van De Wiele TR, Peru KM, Verstraete W, Siciliano SD, Headley JV. Liquid chromatography-mass spectrometry analysis of hydroxylated polycyclic aromatic hydrocarbons, formed in a simulator of the human gastrointestinal tract. *J Chromatogr B Analys Technol Biomed Life Sci*, 806, 245-253 (2004)

Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. *Proteomics*, 12, 1731-1755 (2012)

Veyrand B, Brosseaud A, Sarcher L, Varlet V, Monteau F, Marchand P, Andre F, Le Bizec B. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. *J Chromatogr A*, 1149, 333-344 (2007)

Vichi S, Pizzale L, Conte LS, Buxaderas S, López-Tamames E. Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. *J Chromatogr A*, 1090, 146-154 (2005)

Viñas P, Campillo N, Aguinaga N, Pérez-Cánovas E, Hernández-Córdoba M. Use of headspace solid-phase microextraction coupled to liquid chromatography for the analysis of polycyclic aromatic hydrocarbons in tea infusions. *J Chromatogr A*, 1164, 10-17 (2007)

Wang G, Lee AS, Lewis M, Kamath B, Archer RK. Accelerated solvent extraction and gas chromatography/mass spectrometry for determination of polycyclic aromatic hydrocarbons in smoked food samples. *J Agric Food Chem*, 47, 1062-1066 (1999)

Wang JH, Guo C. Ultrasonication extraction and gel permeation chromatography cleanup for the determination of polycyclic aromatic hydrocarbons in edible oil by an isotope dilution gas chromatography-mass spectrometry. *J Chromatogr A*, 1217, 4732-4737 (2010)

Weiβhaar R. Rapid determination of heavy polycyclic aromatic hydrocarbons in edible fats and oils. *Eur J Lipid Sci Tech*, 104, 282-285 (2002)

Wenzl T, Simon R, Anklam E, Kleiner J. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. *TRAC-Trend Anal Chem*, 25, 716-725 (2006)

Wu S, Li H, Yin X, Si Y, Qin L, Yang H, Xiao J, Peng D. Preparation of monoclonal antibody against pyrene and benzo [a]pyrene and development of enzyme-linked immunosorbent assay for fish, shrimp and crab samples. *Foods*, 11, 3220 (2022)

Xi J, Shi QQ, Lu QY. Development of an indirect competitive ELISA kit for the rapid detection of benzopyrene residues. *Food Anal Methods*, 9, 966-973 (2016)

Yao J, Xu X, Liu L, Kuang H, Wang Z, Xu C. A gold-based strip sensor for the detection of benzo[a] pyrene in edible oils. *Analyst*, 146, 3871-3879 (2021)

Yuan Y, Tang X, Zhang L, Zhang Q, Ma F, Li P. Multi-mode probe based on dual colorimetric and photothermal lateral flow immunoassay for the ultrasensitive determination of benzo[a]pyrene in vegetable oils. *Food Chem*, 482, 144080 (2025)

Zachara A, Gałkowska D, Juszczak L. Method validation and determination of polycyclic aromatic hydrocarbons in vegetable oils by HPLC-FLD. *Food Anal Methods*, 10, 1078-1086 (2017)

Zhang X, Hou H, Xiong W, Hu Q. Development of a method to detect three monohydroxylated polycyclic aromatic hydrocarbons in human urine by liquid chromatographic tandem mass spectrometry. *J Anal Methods Chem*, 2015, 514320 (2015)

Zhang Y, Zou HY, Shi P, Yang Q, Tang LJ, Jiang JH, Wu HL, Yu RQ. Determination of benzo[a]pyrene in cigarette mainstream smoke by using mid-infrared spectroscopy associated with a novel chemometric algorithm. *Anal Chim Acta*, 902, 43-49 (2016)

Zohair A, Salim AB, Soyibo AA, Beck AJ. Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. *Chemosphere*, 63, 541-553 (2006)

Zuin VG, Montero L, Bauer C, Popp P. Stir bar sorptive extraction and high-performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in Mate teas. *J Chromatogr A*, 1091, 2-10 (2005)

Zuin VG, Schellin M, Montero L, Yariwake JH, Augusto F, Popp P. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction as enrichment techniques for the determination of pesticide and benzo[a]pyrene residues in Brazilian sugarcane juice. *J Chromatogr A*, 1114, 180-187 (2006)