Table 6. Analysis of variance (ANOVA) of central composite design for improving biomass of L. brevis SCML 432

Source Coefficient estimate Sum of squares Degree of freedom Mean square Standard error F-value p-valueProb>F1)
Model 8.234792 116.9112 9 12.99014 0.166718 204.4687 9.13E-07
X1-Molasses 2.675625 114.5435 1 114.5435 0.063013 1802.95 1.14E-08
X2-Yeast ext. -0.10312 0.170155 1 0.170155 0.063013 2.678292 0.15284
X3-Maltose 0.276875 1.226553 1 1.226553 0.063013 19.30632 0.004599
X1X22) -0.05458 0.023834 1 0.023834 0.089115 0.375154 0.562686
X1X3 -0.12792 0.130903 1 0.130903 0.089115 2.060455 0.201176
X2X3 0.29625 0.702113 1 0.702113 0.089115 11.05147 0.015918
X12 -0.0325 0.0169 1 0.0169 0.063013 0.266011 0.624467
X22 0.013333 0.002844 1 0.002844 0.063013 0.044773 0.839427
X32 0.050833 0.041345 1 0.041345 0.063013 0.650775 0.45062
Residual 0.381187 6 0.063531
Lack of Fit 0.381137 5 0.076227 1524.548 0.019442
Pure Error 5E-05 1 5E-05
Cor. Total3) 117.2924 15
Standard deviation 0.25 Press4) 3.09
Mean 8.27 R-square 0.99
Coefficient of variation 3.05 Adjusted R-square 0.99
Adequate precision 53.710
Response model was suggested quadratic model through the lack of fit tests.
1)P-value, probability distribution value. p-value less than 0.05 indicate that the term is significant.
2)X1X2, X1X3, X2X3 represent the interaction effect of variables X1, X2, and X3. X12, X22, and X32 are the squared effects of the variables.
3)Cor Total, corrected total sum of squares.
4)Press, the predicted residual sum of squares for the model.